Abstract
In the present study, the DNA methylation patterns of in vitro-derived mouse tetraploid embryos were investigated by immunofluorescence staining with an antibody against 5-methylcytosine (5MeC). Tetraploid embryos could be produced by electrofusion at the stage of two-cell embryos, which could develop to blastocysts followed by fusion of cytoplasm and nucleus and cleavage in vitro. During the fusion of cytoplasm, the DNA methylation levels of the fused embryos are as high as these of two-cell diploid embryos in vivo Then the embryos are rapidly demethylated when the nucleus begin to fuse, resulting in the lowest DNA methylation levels when the nucleus are fused completely. After that, the DNA methylation levels of the fused embryos are gradually increased until the morula stage. However, whereas an asymmetric distribution of DNA methylation is established in vivo-derived blastocysts with a higher methylation level in the inner cell mass (ICM) than that in the trophectoderm, we can not detect the asymmetric distribution in most in vitro-derived tetraploid blastocysts. So the DNA methylation patterns of mouse tetraploid embryos are aberrant, which may lead to subsequent developmental failure and embryo death. This is the first report on the methylation patterns of in vitro-derived mouse tetraploid embryos.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.