Abstract

BackgroundDNA methylation outlier burden has been suggested as a potential marker of biological age. An outlier is typically defined as DNA methylation levels at any one CpG site that are three times beyond the inter-quartile range from the 25th or 75th percentiles compared to the rest of the population. DNA methylation outlier burden (the number of such outlier sites per individual) increases exponentially with age. However, these findings have been observed in small samples.ResultsHere, we showed an association between age and log10-transformed DNA methylation outlier burden in a large cross-sectional cohort, the Generation Scotland Family Health Study (N = 7010, β = 0.0091, p < 2 × 10−16), and in two longitudinal cohort studies, the Lothian Birth Cohorts of 1921 (N = 430, β = 0.033, p = 7.9 × 10−4) and 1936 (N = 898, β = 0.0079, p = 0.074). Significant confounders of both cross-sectional and longitudinal associations between outlier burden and age included white blood cell proportions, body mass index (BMI), smoking, and batch effects. In Generation Scotland, the increase in epigenetic outlier burden with age was not purely an artefact of an increase in DNA methylation level variability with age (epigenetic drift). Log10-transformed DNA methylation outlier burden in Generation Scotland was not related to self-reported, or family history of, age-related diseases, and it was not heritable (SNP-based heritability of 4.4%, p = 0.18). Finally, DNA methylation outlier burden was not significantly related to survival in either of the Lothian Birth Cohorts individually or in the meta-analysis after correction for multiple testing (HRmeta = 1.12; 95% CImeta = [1.02; 1.21]; pmeta = 0.021).ConclusionsThese findings suggest that, while it does not associate with ageing-related health outcomes, DNA methylation outlier burden does track chronological ageing and may also relate to survival. DNA methylation outlier burden may thus be useful as a marker of biological ageing.

Highlights

  • DNA methylation outlier burden has been suggested as a potential marker of biological age

  • We investigate the association of DNA methylation outlier burden with age, explore the potential confounding effect of epigenetic drift on these findings, relate outlier burden to more than a dozen health- and ageing-related traits and to survival, and determine the genetic contribution to individual differences in outlier burden

  • Based on the findings reported here, DNA methylation outlier burden may be useful as a marker of biological age and predict survival, but more work will be needed to establish whether DNA methylation outliers can offer insights into the associations between ageing, health, and lifestyle

Read more

Summary

Introduction

DNA methylation outlier burden has been suggested as a potential marker of biological age. DNA methylation outlier burden (the number of such outlier sites per individual) increases exponentially with age. These findings have been observed in small samples. Analyses have identified a number of loci where methylation changes consistently across individuals as they age, for example the cg16867657 locus in the ELOVL2 gene [4]. In addition to such sites, methylation levels at other loci have been shown to diverge as individuals grow older [5]. This is consistent with the observation that, on average, interindividual variability in DNA methylation tends to increase as people get older, a phenomenon referred to as epigenetic drift [5, 6]

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call