Abstract

IntroductionThe expression of retroviral envelope proteins in the placenta facilitates generation of the multinuclear syncytiotrophoblast as an outer cellular layer of the placenta by fusion of the trophoblastic cells. This process is essential for placenta development in eutherians and for successful pregnancy. MethodsWe tested the hypothesis that alterations in DNA methylation and gene expression profiles of the endogenous retroviruses (ERVs) and genes related to epigenetic reprogramming in placenta of cloned calves result in abnormal offspring phenotypes. The fetal cotyledons in 13 somatic cell nuclear transfer (SCNT) pregnancies were collected. DNA methylation level of Fematrin-1 was analyzed using bisulfite PCR and mRNA levels of Fematrin-1, Syncytin-Rum1, DNMT1, DNMT3A, DNMT3B, TET1, TET2 and TET3 measured by RT-qPCR. ResultsMethylation of Fematrin-1 in placenta of control animals produced by artificial insemination (AI) was similar to live SCNT-produced calves, but hypermethylated than dead SCNT-produced calves. The levels of mRNA differed between SCNT-produced calves and AI animals for all genes, except TET3. However, no differences were observed between the live and dead cloned calves for all genes. Moreover, no differences were found between mRNA levels of Fematrin-1 and Syncytin-Rum1. DiscussionOur results suggest that this altered DNA methylation, deregulation in the expression of ERVs and in the genes of epigenetic machinery in fetal cotyledons of cloned calves may be associated with abnormal placentogenesis found in SCNT-produced animals. Further studies characterizing other mechanisms involved in the regulation of ERVs are important to support the development of new strategies to improve the efficiency of cloning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.