Abstract
Foxl2 and cyp19a1a genes are crucial for the ovarian development, and Foxl2 could play a direct regulatory role on cyp19a1a transcription. In this study, we aimed to study DNA methylation status and mRNA expression patterns of Foxl2 and cyp19a1a genes during ovarian development of female Japanese flounder. The relative expression level of cyp19a1a and Foxl2 gene during the gonadal development stages was measured by quantitative PCR. Moreover, DNA methylation status in the promoter and coding regions of the two genes was detected by bisulfite sequencing. The estradiol-17β (E2) was measured by radioimmunoassay. The results showed low expression levels of cyp19a1a and Foxl2 genes in stages II and V, while the highest expression levels were detected in stage IV. The variation trend of the methylation level of all CpG sites in promoter and exon 1 of cyp19a1a gene and three CpG rich regions in coding region of Foxl2 gene was negatively associated with their expression levels during the ovarian development. In addition, two CpG sites in promoter and seven CpG sites in exon 1 of cyp19a1a were on the putative transcription factors binding sequence. Further studies showed that the forkhead domain, which is important for Foxl2 binding to cyp19a1a was located in the F1 and F2 region. These results provide a powerful theoretical basis for the regulatory mechanism on Foxl2 regulating cyp19a1a and promoting gonadal differentiation towards the female pathway, and further reveal that Foxl2 and cyp19a1a play a vital role in the female Japanese flounder gonad development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.