Abstract

Alzheimer's disease (AD) is a debilitating disorder that manifests with amyloid beta plaque deposition, neurofibrillary tangles, neuronal loss, and severe cognitive impairment. Although much effort has been made to decipher the pathogenesis of this disease, the mechanisms causing these detrimental outcomes remain obscure. Over the past few decades, neuroepigenetics has emerged as an important field that, among other things, explores how reversible modifications can change gene expression to control behavior and cognitive abilities. Among epigenetic modifications, DNA methylation requires further elucidation for the conflicting observations from AD research and its pivotal role in learning and memory. In this review, we focus on the essential components of DNA methylation, the effects of aberrant methylation on gene expressions in the amyloidogenic pathway and neurochemical processes, as well as memory epigenetics in Alzheimer's disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.