Abstract

Our purpose was to identify epigenetic markers of breast cancer risk, which can be reliably measured in peripheral blood and are amenable for large population screening. We used 2 independent assays, luminometric methylation assay (LUMA) and long interspersed elements-1 (LINE-1) to measure "global methylation content" in peripheral blood DNA from a well-characterized population-based case-control study. We examined associations between methylation levels and breast cancer risk among 1055 cases and 1101 controls and potential influences of 1-carbon metabolism on global methylation. Compared with women in the lowest quintile of LUMA methylation, those in the highest quintile had a 2.41-fold increased risk of breast cancer (95% confidence interval: 1.83-3.16; P, trend<0.0001). The association did not vary by other key tumor characteristics and lifestyle risk factors. Consistent with LUMA findings, genome-wide methylation profiling of a subset of samples revealed greater promoter hypermethylation in breast cancer case participants (P=0.04); higher LUMA was associated with higher promoter methylation in the controls (P=0.05). LUMA levels were also associated with functional sodium nitroprusside in key 1-carbon metabolizing genes, MTHFR C677T (P=0.001) and MTRR A66G (P=0.018). LINE-1 methylation was associated with neither breast cancer risk nor 1-carbon metabolism. Our results show that global promoter hypermethylation measured in peripheral blood was associated with breast cancer risk.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.