Abstract

Simple SummaryIt is well established that ovarian cancer “runs in families”, where ovarian and other cancers (commonly breast cancer) occur at early ages at onset and in multiple generations. After decades of genetic studies, rare high-risk genetic mutations in cancer susceptibility genes and over 40 common genetic variants with much smaller risks have been identified. However, based on familial studies, we know that additional heritable genetic risk factors exist. It is possible that epigenetic variation—differences in how DNA is read, and which genes are actively expressed (or not) —also contributes to ovarian cancer susceptibility. This review summarizes the current collection of epidemiological studies that have investigated the role of DNA methylation—one type of epigenetic mechanism—in the risk of ovarian cancer.Epigenetic alterations are somatically acquired over the lifetime and during neoplastic transformation but may also be inherited as widespread ‘constitutional’ alterations in normal tissues that can cause cancer predisposition. Epithelial ovarian cancer (EOC) has an established genetic susceptibility and mounting epidemiological evidence demonstrates that DNA methylation (DNAm) intermediates as well as independently contributes to risk. Targeted studies of known EOC susceptibility genes (CSGs) indicate rare, constitutional BRCA1 promoter methylation increases familial and sporadic EOC risk. Blood-based epigenome-wide association studies (EWAS) for EOC have detected a total of 2846 differentially methylated probes (DMPs) with 71 genes replicated across studies despite significant heterogeneity. While EWAS detect both symptomatic and etiologic DMPs, adjustments and analytic techniques may enrich risk associations, as evidenced by the detection of dysregulated methylation of BNC2—a known CSG identified by genome-wide associations studies (GWAS). Integrative genetic–epigenetic approaches have mapped methylation quantitative trait loci (meQTL) to EOC risk, revealing DNAm variations that are associated with nine GWAS loci and, further, one novel risk locus. Increasing efforts to mapping epigenome variation across populations and cell types will be key to decoding both the genomic and epigenomic causal pathways to EOC.

Highlights

  • Epithelial ovarian cancer (EOC) is a relatively rare cancer with a large heritable component that presents an opportunity for genetic risk prediction [1] to inform early intervention as well as therapeutic strategies

  • Histotype-specific differentially methylated probes (DMPs) were only reported in one study, the findings indicate peripheral blood leukocytes (PBL) DNA methylation (DNAm) may display unique epigenetic alterations that occur during tumorigenesis [21]

  • DNAm has been at the forefront of epigenetic research and has provided a paradigm for the epigenetic inheritance of cancer susceptibility

Read more

Summary

Introduction

Epithelial ovarian cancer (EOC) is a relatively rare cancer with a large heritable component that presents an opportunity for genetic risk prediction [1] to inform early intervention as well as therapeutic strategies. Epigenetics has grown to encompass a broad catalogue of biological mechanisms and molecules that control DNA-template processes such as transcription, replication, and repair, to establish and maintain a wide range of cellular phenotypes and physiological states [6]. This is achieved by altering the organization and function of chromatin through the plastic layering of post-translational modifications to DNA and histones, as well as non-coding RNA interference [7,8]. We briefly summarize the molecular and population features of DNA methylation and their known role in cancer development and heritability

DNA Methylation in Epigenetic Control and Heritability
DNA Methylation in Ovarian Cancer Susceptibility Genes
Study Design
Epigenome-Wide Association Studies of DNA Methylation
Results
Genetic Susceptibility Mediated by DNA Methylation
Environmental Risk Mediated by DNA Methylation
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call