Abstract
In mammals, epigenetic modifications involving DNA methylation are necessary for the completion of the cell differentiation process. However, the global DNA methylation landscape and its dynamics during yak adipocyte differentiation remain unexplored. Here, we performed whole-genome bisulfite sequencing (WGBS) to asses DNA methylation in yak preadipocytes and adipocytes, combining these results with those of our previous studies on changes in chromatin accessibility and gene expression during yak adipogenesis. The results showed that CG methylation levels were lower in promoter than in exon and intron, and gradually decreasing from the distal regions to transcription start site (TSS). There was a significant negative correlation between CG methylation levels located in promoter and gene expression levels. The 46 genes shared by CG differentially methylated regions (DMRs) and differential chromatin accessibility were significantly enriched in Hedgehog and PI3K-Akt signaling pathways. ATAC-seq peaks with high chromatin accessibility located in both promoter (≤ 2 kb from TSS) and distal (> 2 kb from TSS) regions corresponded to low methylation levels. Taken together, these findings demonstrated that DNA methylation and its interactions with chromatin accessibility regulate gene expression during yak adipocyte differentiation, contributing to the understanding of mechanisms of various epigenetic modifications and their interactions in adipogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.