Abstract

Plasmid-encoded fimbriae (Pef) expressed by Salmonella typhimurium mediate adhesion to mouse intestinal epithelium. The pef operon shares features with the Escherichia coli pyelonephritis-associated pilus (pap) operon, which is under methylation-dependent transcriptional regulation. These features include conserved DNA GATC box sites in the upstream regulatory region as well as homologues of the PapI and PapB regulatory proteins. Unlike Pap fimbriae, which are expressed in a variety of laboratory media, Pef fimbriae were expressed only in acidic, rich broth under standing culture conditions. Analysis of S. typhimurium grown under these conditions indicated that Pef production was regulated by a phase variation mechanism, in which the bacterial population was skewed between fimbrial expression (phase ON) and non-expression (phase OFF) states. Leucine-responsive regulatory protein (Lrp) and DNA adenine methylase (Dam) were required for pef transcription. In contrast, the histone-like protein (H-NS) and the stationary-phase sigma factor (RpoS) repressed pef transcription. Methylation of the pef GATC II site appeared to be required for pef fimbrial expression based on analysis of a GCTC II mutant that did not express Pef fimbriae. Analysis of the DNA methylation states of pef GATC sites indicated that, under acidic growth conditions, which induced Pef production, most GATC I sites were non-methylated, whereas GATC II and GATC X were predominantly methylated. The methylation protection at GATC I and GATC II was dependent upon Lrp and was modulated by PefI. Together, these results indicate that Pef production is regulated by DNA methylation, which is the first example of methylation-dependent gene regulation outside of E. coli.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.