Abstract

Melanoma is a poor-prognosis cancer in both humans and dogs. We have elucidated the antitumor mechanisms of antioncogenic microRNA (miR)-203 which is downregulated in human melanoma, as well as in canine melanoma. The aim of this study was to clarify the mechanism of this downregulation. We focused on epigenetic aberration of miR-203 transcription. Treatment with 5-aza-2'-deoxycitidine (5-aza) markedly upregulated the expression level of miR-203 in almost all of the cell lines tested. Furthermore, bisulfite sequencing or methylation-specific PCR showed DNA methylation of CpG islands upstream of the miR-203 coding region (MIR203) in both human and canine melanoma cells, as well as in canine clinical specimens, but not in human normal melanocytes. The results of a luciferase activity assay showed obvious suppression of the transcription of miR-203 by DNA methylation. The use of the luciferase activity assay for CREB1 and an inhibition assay of miR-203 function performed with an miR-203 inhibitor confirmed the contribution of miR-203 upregulation toward the negative regulation of the target gene of miR-203. These results indicate that canine melanoma might be a preclinical model of human melanoma for epigenetic studies. In addition, this study suggests that agents that can demethylate MIR203 could be a common promising therapeutic agent for the treatment of human and canine melanomas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.