Abstract

IntroductionThe invasion of extravillous cytotrophoblasts (EVTs) into the maternal uterine decidua and vasculature is critical for human placenta development and pregnancy maintenance. The imprinted gene MEST/PEG1 has been implicated in trophoblast development; however, the role of MEST in EVT invasion and the accompanying early pregnancy complications are not fully understood. MethodsWestern blot, immunofluorescence and immunohistochemistry were used to detect MEST protein expression and localization by using antibodies recognize 2 reported isoforms. Specific small interference RNA (siRNA) targeting both of the MEST isoforms was applied to silence MEST expression in extravillous explants and HTR8/SVneo cells. Cell invasion and migration were assessed using the Matrigel invasion, Transwell migration assay and the xCELLigence system. Promoter DNA methylation was examined using bisulfite-sequencing polymerase chain reaction (BSP). ResultsMEST protein was highly expressed in EVTs in the first trimester placenta and in the invasive EVT cell lines HTR-8/Svneo and HPT-8. Weak MEST expression was found in cytotrophoblasts (CTBs) and the choriocarcinoma-derived CTB cell line JEG-3. The specific siRNA knockdown of MEST expression significantly reduced HTR-8/Svneo cell invasion and migration as well as extravillous explant outgrowth, which were associated with the downregulation of Twist, N-cadherin and Vimentin. Decreased MEST protein expression with isoform 2 promoter hypermethylation was observed in the placentas of missed abortions, suggesting a possible pathological mechanism of missed abortion. ConclusionsSuppressed expression of MEST was associated with its isoform 2 promoter hypermethylation ex vivo placenta tissues and in vitro cultured EVT cell lines. The present results provide a possible pathological mechanism of missed abortion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call