Abstract

BackgroundThe neural transcription factor SOX11 is present at specific stages during embryo development with a very restricted expression in adult tissue, indicating precise regulation of transcription. SOX11 is strongly up-regulated in some malignancies and have a functional role in tumorgenesis. With the aim to explore differences in epigenetic regulation of SOX11 expression in normal versus neoplastic cells, we investigated methylation and histone modifications related to the SOX11 promoter and the possibility to induce re-expression using histone deacetylase (HDAC) or EZH2 inhibitors.MethodsThe epigenetic regulation of SOX11 was investigated in distinct non-malignant cell populations (n = 7) and neoplastic cell-lines (n = 42) of different cellular origins. DNA methylation was assessed using bisulfite sequencing, methylation-specific melting curve analysis, MethyLight and pyrosequencing. The presence of H3K27me3 was assessed using ChIP-qPCR. The HDAC inhibitors Vorinostat and trichostatin A were used to induce SOX11 in cell lines with no endogenous expression.ResultsThe SOX11 promoter shows a low degree of methylation and strong enrichment of H3K27me3 in non-malignant differentiated cells, independent of cellular origin. Cancers of the B-cell lineage are strongly marked by de novo methylation at the SOX11 promoter in SOX11 non-expressing cells, while solid cancer entities display a more varying degree of SOX11 promoter methylation. The silencing mark H3K27me3 was generally present at the SOX11 promoter in non-expressing cells, and an increased enrichment was observed in cancer cells with a low degree of SOX11 methylation compared to cells with dense methylation. Finally, we demonstrate that the HDAC inhibitors (vorinostat and trichostatin A) induce SOX11 expression in cancer cells with low levels of SOX11 methylation.ConclusionsWe show that SOX11 is strongly marked by repressive histone marks in non-malignant cells. In contrast, SOX11 regulation in neoplastic tissues is more complex involving both DNA methylation and histone modifications. The possibility to re-express SOX11 in non-methylated tissue is of clinical relevance, and was successfully achieved in cell lines with low levels of SOX11 methylation. In breast cancer patients, methylation of the SOX11 promoter was shown to correlate with estrogen receptor status, suggesting that SOX11 may be functionally re-expressed during treatment with HDAC inhibitors in specific patient subgroups.Electronic supplementary materialThe online version of this article (doi:10.1186/s12885-015-1208-y) contains supplementary material, which is available to authorized users.

Highlights

  • The neural transcription factor SOX11 is present at specific stages during embryo development with a very restricted expression in adult tissue, indicating precise regulation of transcription

  • The aims of the present study were to explore the epigenetic regulation of SOX11 in non-malignant and neoplastic cells of various origins and to assess the possibility to reexpress SOX11 upon treatment with histone deacetylase (HDAC) inhibitors

  • To assess if the previously observed SOX11 promoter methylation and histone modifications in B cell lymphomas are a consequence of tumorgenesis or merely reflect the epigenetic status of the normal counterpart, non-malignant mature B cells from three differentiation stages, including naive, germinal center (GC) and memory B-cells, were FACS-sorted from tonsils (n=6)

Read more

Summary

Introduction

The neural transcription factor SOX11 is present at specific stages during embryo development with a very restricted expression in adult tissue, indicating precise regulation of transcription. The expression of SOX11 is absent in most adult differentiated tissues, further supporting the role as a stem cell specific regulator [4]. SOX11 has been shown to be regulated by epigenetic events in pluripotent embryonic stem cells and is marked with both activating (H3K4me3) and repressive (H3K27me3) histone marks [5]. These bivalent marks are thought to keep developmentally important genes silenced, but poised for activation during lineage commitment [6]. This is supported by gene expression analysis of de novo methylated genes that show lack of expression already in unmethylated non-malignant tissues [10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call