Abstract

Sex chromosomes evolved from autosomes. Recombination suppression in the sex-determining region and accumulation of deleterious mutations lead to degeneration of the Y chromosomes in many species with heteromorphic X/Y chromosomes. However, how the recombination suppressed domain expands from the sex-determining locus to the entire Y chromosome remains elusive. The Y chromosome of papaya (Carica papaya) diverged from the X chromosome approximately 2-3 million years ago and represents one of the most recently emerged Y chromosomes. Here, we report that the male-specific region of the Y chromosome (MSY) spans approximately 13% of the papaya Y chromosome. Interestingly, the centromere of the Y chromosome is embedded in the MSY. The centromeric domain within the MSY has accumulated significantly more DNA than the corresponding X chromosomal domain, which leads to abnormal chromosome pairing. We observed four knob-like heterochromatin structures specific to the MSY. Fluorescence in situ hybridization and immunofluorescence assay revealed that the DNA sequences associated with the heterochromatic knobs are highly divergent and heavily methylated compared with the sequences in the corresponding X chromosomal domains. These results suggest that DNA methylation and heterochromatinization play an important role in the early stage of sex chromosome evolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.