Abstract

Phytophthora sansomeana is an emerging oomycete pathogen causing root rot in many agricultural species including soybean. However, as of now, only one potential resistance gene has been identified in soybean, and our understanding of how genetic and epigenetic regulation in soybean contributes to responses against this pathogen remains largely unknown. In this study, we performed whole genome bisulfite sequencing (WGBS) on two soybean lines, Colfax (resistant) and Williams 82 (susceptible) in response to P. sansomeana at two time points: 4 and 16 hours post inoculation to compare their methylation changes. Our findings revealed that there were no significant changes in genome-wide CG, CHG (H = A, T, or C), and CHH methylation. However, we observed local methylation changes, specially an increase in CHH methylation around genes and transposable elements (TEs) after inoculation, which occurred earlier in the susceptible line and later in the resistant line. After inoculation, we identified differentially methylated regions (DMRs) in both Colfax and Williams 82, with a predominant presence in TEs. Notably, our data also indicated that more TEs exhibited changes in their methylomes in the susceptible line compared to the resistant line. Furthermore, we discovered 837 DMRs within or flanking 772 differentially expressed genes (DEGs) in Colfax and 166 DMRs within or flanking 138 DEGs in Williams 82. These DEGs had diverse functions, with Colfax primarily showing involvement in metabolic process, defense response, plant and pathogen interaction, anion and nucleotide binding, and catalytic activity, while Williams 82 exhibited a significant association with photosynthesis. These findings suggest distinct molecular responses to P. sansomeana infection in the resistant and susceptible soybean lines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.