Abstract
BackgroundPoly-ADP ribosylation (PARylation) is a post translational modification, catalyzed by Poly(ADP-ribose)polymerase (PARP) family. In Drosophila, PARP-I (human PARP-1 ortholog) is considered to be the only enzymatically active isoform. PARylation is involved in various cellular processes such as DNA repair in case of base excision and strand-breaks. ObservationsStrand-breaks (SSB and DSB) are detrimental to cell viability and, in Drosophila, that has a unique PARP family organization, little is known on PARP involvement in the control of strand-breaks repair process. In our study, strands-breaks (SSB and DSB) are chemically induced in S2 Drosophila cells using bleomycin. These breaks are efficiently repaired in S2 cells. During the bleomycin treatment, changes in PARylation levels are only detectable in a few cells, and an increase in PARP-I and PARP-II mRNAs is only observed during the recovery period. These results differ strongly from those obtained with Human cells, where PARylation is strongly activating when DNA breaks are generated. Finally, in PARP knock-down cells, DNA stability is altered but no change in strand-breaks repair can be observed. ConclusionsPARP responses in DNA strands-breaks context are functional in Drosophila model as demonstrated by PARP-I and PARP-II mRNA increases. However, no modification of the global PARylation profile is observed during strand-breaks generation, only changes at cellular levels are detectable. Taking together, these results demonstrate that PARylation process in Drosophila is tightly regulated in the context of strands-breaks repair and that PARP is essential during the maintenance of DNA integrity but dispensable in the DNA repair process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.