Abstract

The covalent rejoining of DNA ends at single-stranded or double-stranded DNA breaks is catalyzed by DNA ligases. Four DNA ligase activities (I–IV) have been identified in mammalian cells [1]. It has recently been demonstrated that DNA ligase IV interacts with and is catalytically stimulated by the XRCC4 protein [2,3], which is essential for DNA double-strand break repair and the genomic rearrangement process of V(D)J recombination [4]. Together, with the finding that the yeast DNA ligase IV homologue is essential for non-homologous DNA end joining [5–7], this has led to the hypothesis that mammalian DNA ligase IV catalyzes ligation steps in both of these processes [8]. DNA ligase IV is characterized by a unique carboxy-terminal tail comprising two BRCT (BRCA1 carboxyl terminus) domains. BRCT domains were initially identified in the breast cancer susceptibility protein BRCA1 [9], but are also found in other DNA repair proteins [10]. It has been suggested that DNA ligase IV associates with XRCC4 via its tandem BRCT domains and that this may be a general model for protein–protein interactions between DNA repair proteins [3]. We have performed a detailed deletional analysis of DNA ligase IV to define its XRCC4-binding domain and to characterize regions essential for its catalytic activity. We find that a region in the carboxy-terminal tail of DNA ligase IV located between rather than within BRCT domains is necessary and sufficient to confer binding to XRCC4. The catalytic activity of DNA ligase IV is affected by mutations within the first two-thirds of the protein including a 67 amino-acid amino-terminal region that was previously thought not to be present in human DNA ligase IV [11].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call