Abstract

We have prepared mono- and binuclear complexes of Zn(II) and Cd(II) with bis(2-pyridyl aldehyde) thiocarbodiazone (H(2)L(1)) and bis(methyl 3-pyridyl ketone) thiocarbodiazone (H(2)L(2)). Cytotoxicity data against the ovarian tumor cell line A2780cisR (acquired resistance to cisplatin) indicate that the mononuclear complex Cd/H(2)L(2) (1) and the binuclear complex Cd(2)/H(2)L(1) (4) are able to circumvent cisplatin resistance and that their cytotoxic activity does not substantially vary after depletion of intracellular levels of glutathione. Moreover, DNA binding studies show that complexes 1 and 4 have higher efficiency than cisplatin at forming DNA interstrand cross-links in both naked pBR322 plasmid and A2780cisR cellular DNA. Interestingly, the thiocarbodiazone ligands alone do not show the biological properties of complexes 1 and 4. Altogether these results suggest that DNA interstrand cross-link formation by compounds 1 and 4 might be related with their cytotoxic activity in cisplatin-resistant cells. We think that compounds 1 and 4 may represent a novel structural lead for the development of cadmium cytotoxic agents capable of improving antitumor activity in cisplatin-resistant tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.