Abstract

Saffron comes from the dried red stigmas of the Crocus sativus L. flower. Except for its use in cooking and in traditional medicine, it has numerous applications as an antitoxic, antioxidant, and anticancer agent due to its secondary metabolites and their derivatives (safranal, crocins, crocetin, dimethylcrocetin). However, there has been no information on the interactions of these secondary metabolites with individual DNA at molecular level. This study was designed to examine the interaction of safranal, crocetin (CRT), and dimethylcrocetin (DMCRT) with calf-thymus DNA in aqueous solution at physiological conditions, using constant DNA concentration (6.25 mM) and various drug/DNA(phosphate) molar ratios from 1/48 to 1/2. FTIR and UV-visible difference spectroscopic methods are used to determine the drug binding sites, the binding constants, and the effects of carotenoids and safranal complexation on the stability and conformation of DNA duplex. Both intercalative and external binding modes were observed, with overall binding constants K(safranal) = 1.24 x 10(3) M(-1), K(CRT) = 6.2 x 10(3) M(-1) and K(DMCRT) = 1.85 x 10(5) M(-1) A partial B- to A-DNA transition occurs at high carotenoids and safranal concentrations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.