Abstract
Evanescent wave cavity ring-down absorption spectroscopy (EW-CRDS) is employed to study interaction and binding kinetics of DNA strands by using gold nanoparticles (Au NPs) as sensitive reporters. These Au NPs are connected to target DNA of study that hybridizes with the complementary DNA fixed on the silica surface. By the absorbance of Au NPs, the interaction between two DNA strands may be examined to yield an adsorption equilibrium constant of 2.2×1010M−1 using Langmuir fit. The binding efficiency that is affected by ion concentration, buffer pH and temperature is also examined. This approach is then applied to the label-free detection of the DNA mutation diseases using the sandwich hybridization assay. For monitoring a gene associated with sickle-cell anemia, the detection limit and the adsorption equilibrium constant is determined to be 1.2pM and (3.7±0.8)×1010M−1, distinct difference from the perfectly matched DNA sequence that yields the corresponding 0.5pM and (1.1±0.2)×1011M−1. The EW-CRDS method appears to have great potential for the investigation of the kinetics of a wide range of biological reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.