Abstract

In this paper, a demonstration of DNA computing for k-shortest paths of a weighted graph is realized by biochemical experiments in such a way that every path is encoded by oligonucleotides and the length of the path is directly proportional to the length of oligonucleotides. For initial pool generation, parallel overlap assembly is employed for efficient generation of all candidate answers. During the computation, after the initial pool of solution is subjected to amplification, which is polymerase chain reaction, k-shortest paths could be separated by gel electrophoresis and the selection can be made at last

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.