Abstract

Decision-making systems are an integral part of any autonomous device. With the recent developments in bio-nanorobots, smart drugs, and engineered viruses, there is an immediate need of decision-making systems which are bio-compatible in nature. DNA is considered a perfect candidate for designing the computing systems in such decision-making systems because of their bio-compatibility and programmability. Complex biological systems can be easily modeled/controlled using fuzzy logic operations with the help of linguistic rules. In this paper, we propose an enzyme-free DNA strand displacement-based architecture of fuzzy inference engine using the fuzzy operators, such as fuzzy intersection and union. The basic building blocks of this architecture are minimum, maximum, and fan-out gates. All these gates are analog in nature, which means that the input/output values of the gates are represented by the concentration of the input/output DNA strands. To demonstrate the performance of the proposed architecture, a detailed design, analysis, and kinetic simulation of each gate were carried out. Finally, the minimum and maximum gates are cascaded according to the pre-defined rules to design the fuzzy inference engine. All these DNA circuits are implemented and simulated in Visual DSD software.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.