Abstract

A recently developed, adaptive constant-current electroporation technique was used to immunize mice with an intramuscular injection of plasmid coding for the extracellular and transmembrane domains of the product of the rat neu(664V-E) oncogene protein. In wild-type BALB/c mice, plasmid electroporation at lower current settings elicits higher antibody titers, a strong cytotoxic response and completely protects all mice vaccinated with 10, 25 and 50 microg of plasmid against a lethal challenge of rat neu+ carcinoma cells. BALB/c mice transgenic for the transforming rat neu(664V-E) (ErbB-2, Her-2/neu) oncogene (BALB-neuT(664V-E)) develop an invasive mammary gland carcinoma by 20 weeks of age. Remarkably, when transgenic BALB-neuT(664V-E) mice were vaccinated at a 10- week interval with 50 microg of plasmid with 0.2 A electroporation, mice remained tumor free for more than a year. A single administration of plasmid associated with electroporation was enough to markedly delay carcinogenesis progression in mice with multiple microscopic invasive carcinomas, and keep about 50% of mice tumor free at one year of age. Thus, vaccination using a clinically relevant dose of plasmid encoding the extracellular and transmembrane domains of the neu oncogene delivered by electroporation prevents long-term tumor formation. These improvements in the efficacy of this cancer vaccine regimen vastly increase its chances for clinical success.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.