Abstract

DNA molecules immobilization on n-type single silicon was investigated. Electronic states were studied by measuring voltage-ampere characteristics (VAC) of Au-(n-Si) contacts with DNA molecules on the interface. It is showed that strong DNA fixation is observed in the presence of magnesium ions in solution. Molecules conformation on the surface is determined by the degree of the substrate hydrophobicity. Developed method of DNA immobilization allows to create model systems with the molecules in the form of molecular mesh or ropes depending on irradiation intensity. Formed on the silicon surface molecular structures have different effect on the electrical properties of Au-DNA-(n-Si) contacts. Presence of molecular mesh on the Schottky diode interface makes its VAC similar to ideal diode. The ropes lead to electronic state density increasing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.