Abstract

Background We previously identified a number of genes which were methylated significantly more frequently in the tumor compared to the non-cancerous lung tissues from non-small cell lung cancer (NSCLC) patients. Detection of methylation profiles of genes in NSCLC could provide insight into differential pathways to malignancy and lead to strategies for better treatment of individuals with NSCLC. Methods We determined the DNA methylation status of 27 genes using quantitative MethyLight assays in lung tumor samples from 117 clinically well-characterized NSCLC patients. Results Hypermethylation was detected in one of more of the genes in 106 (91%) of 117 cases and was detected at high levels (percentage methylation reference (PMR) ≥ 4%) in 79% of NSCLC cases. Methylation of APC, CCND2, KCNH5 and, RUNX was significantly more frequent in adenocarcinomas compared to squamous cell carcinomas (SCC), while methylation of CDKN2A was more common in SCC. Hypermethylation of KCNH5, KCNH8, and RARB was more frequent in females compared to males. Hypermethylation of APC and CCND2 was inversely associated with proliferation score assessed by Ki-67 level. Conclusions Our findings of differential gene hypermethylation frequencies in tumor tissues from patients with adenocarcinoma or squamous cell cancers and in females compared to males suggests that further investigation is warranted in order to more fully understand the potential disparate pathways and/or risk factors for NSCLC associated with histologic type and gender.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.