Abstract

A novel multiwall carbon nanotubes (MWNTs)-based hybrid material with sandwich structure (DNA-Hb-MWNTs) was fabricated by alternative electrostatic assembly of hemoglobin (Hb) and DNA on MWNTs. TEM showed that such a nanocomposite behaved as an obvious core−shell structure. SEM proved the well-preserved 3-D structure of DNA-Hb-MWNTs assembled on an electrode. UV−vis and FTIR spectroscopy were used to monitor the assembly procession and also demonstrated that Hb had been sandwiched into DNA and MWNTs without denaturation. A pair of stable and well-defined redox peaks of Hb with a formal potential of about −0.298 V (vs Ag/AgCl) in a pH 6.0 phosphate buffer solution (PBS) were obtained at the DNA-Hb-MWNTs nanocomposite film-modified glassy carbon (GC) electrode (DNA-Hb-MWNT/GC electrode). Compared with the Hb-MWNTs/GC electrode, the DNA-Hb-MWNTs/GC electrode exhibited enhanced faradic current response, and the portion of the electroactive proteins had been greatly improved. Furthermore, the modified electrode also displayed good sensitivity, wide linear range, and long-term stability to the detection of hydrogen peroxide. Such an organized multicomponent biosensor platform may find wide potential applications in biosensors, biocatalysis, biomedical devices, and bioelectronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.