Abstract

Nobel metal nanoparticles with tunable morphologies are highly desirable due to their unique electronic, magnetic, optical, and/or catalytic features. Here we report the use of multilayered graphdyine (GD) as a substrate for the reductant-free, room-temperature synthesis of single-crystal Au nanostructures with tunable morphology. We find that the GD template rich in sp-carbon atoms possesses high affinity with Au atoms on the {111} facets, and that the intrinsic reductivity of GD facilitates the rapid growth of Au nanoplates. The introduction of single-stranded DNA strands further results in the synthesis of Au nanostructures with decreased anisotropy, i.e., polygons and flower-like nanoparticles. The DNA-guided tunable Au growth arises from the strong adsorption of DNA on the GD template that alters the uniformity of the interface, which provides a direct route to synthesize Au nanostructures with tailorable morphology and photonic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.