Abstract

The CRISPR–Cas9 system is a powerful tool for editing genes of interest in specific plant genomes. Indeed, genome-editing systems have been used to enhance a variety of agricultural traits and to study gene functions in many plant species, and the plasmid-mediated delivery of Cas9 and single guide RNA (sgRNA) to plants has been reported to facilitate highly efficient editing. However, the random and stable integration of plasmid DNA sequences into plant genomes can cause insertional mutagenesis, and an additional step is required to remove such foreign sequences from edited plant genomes. Accordingly, the aim of the present study was to investigate the effectiveness of directly delivering purified CRISPR–Cas9 ribonucleoproteins (RNPs) to protoplasts from cabbage (Brassica oleracea var. capitata), an important cruciferous vegetable. The flowering-time regulator gene GIGANTEA (GI) was targeted, with the goal of delaying flowering time and prolonging vegetative growth. We investigated the targeted mutagenesis insertion and deletion rates using targeted deep sequencing. The mutation frequency achieved using one of the sgRNAs (sgRNA2) was 2% in the infected protoplast. The shoots were regenerated from 44% (46/103) of protoplast-derived calli. Consequently, three independent and completely transgene-free mutants were obtained, including one homogeneous biallelic line in which both GI alleles were successfully edited, thereby yielding a complete GI knockout line. These results suggest that the transgene-free CRISPR–Cas9 system is a promising tool for improving agricultural beneficial traits of cabbage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.