Abstract

Self-assembled DNA nanostructures have shown remarkable potential in the engineering of biosensing interfaces, which can improve the performance of various biosensors. In particular, by exploiting the structural rigidity and programmability of the framework nucleic acids with high precision, molecular recognition on the electrochemical biosensing interface has been significantly enhanced, leading to the development of highly sensitive and specific biosensors for nucleic acids, small molecules, proteins, and cells. In this review, we summarize recent advances in DNA framework-engineered biosensing interfaces and the application of corresponding electrochemical biosensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call