Abstract

The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) requires processing of broken ends. For repair to commence, the DSB must first be resected to generate a 3'-single-stranded DNA (ssDNA) overhang, which becomes a substrate for the DNA strand exchange protein, Rad511. Genetic studies have implicated a multitude of proteins in the process, including helicases, nucleases, and topoisomerases2–4. Here we have biochemically reconstituted elements of the resection process and reveal that it requires the nuclease, Dna2, the RecQ-family helicase, Sgs1, and the ssDNA-binding protein, Replication protein-A (RPA). We establish that Dna2, Sgs1, and RPA comprise a minimal protein complex capable of DNA resection in vitro. Sgs1 helicase unwinds the DNA to produce an intermediate that is digested by Dna2, and RPA stimulates DNA unwinding by Sgs1 in a species-specific manner. Interestingly, RPA is also required both to direct Dna2 nucleolytic activity to the 5'-terminated strand of the DNA break and to inhibit 3'→5' degradation by Dna2, actions which generate and protect the 3'-ssDNA overhang, respectively. In addition to this core machinery, we establish that both the topoisomerase 3 (Top3) and Rmi1 complex and the Mre11-Rad50-Xrs2 complex (MRX) play important roles as stimulatory components. Stimulation of end resection by the Top3-Rmi1 heterodimer and the MRX proteins is via complex formation with Sgs15,6 that unexpectedly stimulates DNA unwinding. We suggest that Top3-Rmi1 and MRX are important for recruitment of the Sgs1-Dna2 complex to DSBs. Our experiments provide a mechanistic framework for understanding initial steps of recombinational DNA repair in eukaryotes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call