Abstract
Recently, DNA encoding has shown its potential to store the vital information of the image in the form of nucleotides, namely A, C, T , and G , with the entire sequence following run-length and GC-constraint. As a result, the encoded DNA planes contain unique nucleotide strings, giving more salient image information using less storage. In this paper, the advantages of DNA encoding have been inherited to uplift the retrieval accuracy of the content-based image retrieval (CBIR) system. Initially, the most significant bit-plane-based DNA encoding scheme has been suggested to generate DNA planes from a given image. The generated DNA planes of the image efficiently capture the salient visual information in a compact form. Subsequently, the encoded DNA planes have been utilized for nucleotide patterns-based feature extraction and image retrieval. Simultaneously, the translated and amplified encoded DNA planes have also been deployed on different deep learning architectures like ResNet-50, VGG-16, VGG-19, and Inception V3 to perform classification-based image retrieval. The performance of the proposed system has been evaluated using two corals, an object, and a medical image dataset. All these datasets contain 28,200 images belonging to 134 different classes. The experimental results confirm that the proposed scheme achieves perceptible improvements compared with other state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.