Abstract

Paragonimus westermani (P. westermani) is widely spread in Asian countries and is one of the most important causative agents for lung fluke diseases. The prevention and control of Paragonimiaisis mainly depends on the accurate diagnosis and effective treatment. In this study, we developed a loop-mediated isothermal amplification (LAMP) assay targeted to a portion of the Ty3/gypsy-like LTR retrotransposon (Rn1) sequence coupled with a lateral flow dipstick (LFD) for the rapid detection of P. westermani-specific amplicons. The positive LAMP products were biotin-labeled and hybridized with a fluorescein isothiocyanate-labeled probe which could be visually detected by LFD. No cross-reaction were observed with other parasitic pathogens including Trichinella spiralis, Anisakis simplex, Schistosoma japonicum and Gnathostoma spinigerum, but this LAMP assay could not distinguish P. westermani with Paragonimus skrjabini and Paragonimus heterotremus. The detection limit of the LAMP assay for P. westermani was 2.7 fg/µL, while that of PCR method was 27 fg/µL. LAMP method was applied to detect P. westermani genomic DNA in blood samples form experimental infected dogs, and results showed the parasite was detectable as early as week 2. LAMP-LFD assay applicability was successfully tested in dog blood samples collected from five cities (Wenzhou, Hangzhou, Huzhou, Jiaxing and Shaoxing) in Zhejiang province. In summary, the established LAMP-LFD assay targeted to the Rn1 sequence is a rapid and convenient method for specific detection of P. westermani.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.