Abstract
DNA semiconductor detection and sequencing is considered to be the most promising approach for future discoveries in genome and proteome research which is dramatically dependent on the challenges faced by semiconductor nanotechnologies. DNA pH-sensing with ion-sensitive field effect transistor (ISFET) is well-known to be a successfully applied electronic platform for genetic research. However this method lacks fundamentally in chemical specificity. Here we develop the first ever silicon nanosandwich pump device, which provides both the excitation of DNA fragments’ self-resonant modes and the feedback for current-voltage measurements at room temperature. This device allows direct detection of singlestranded label-free oligonucleotides by measuring their THz frequency response in aqueous solution. These results provide a new insight into the nanobioelectronics for the future real-time technologies of direct gene observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.