Abstract
Protein kinases are known to play a prominent role in oncogenic progression across multiple cancer subtypes, yet their role in prostate cancer progression remains underexplored. The purpose of this study was to identify kinases that drive prostate cancer progression.Experimental Design: To discover kinases that drive prostate cancer progression, we investigated the association between gene expression of all known kinases and long-term clinical outcomes in tumor samples from 545 patients with high-risk disease. We evaluated the impact of genetic and pharmacologic inhibition of the most significant kinase associated with metastatic progression in vitro and in vivo. DNA-dependent protein kinase (DNAPK) was identified as the most significant kinase associated with metastatic progression in high-risk prostate cancer. Inhibition of DNAPK suppressed the growth of both AR-dependent and AR-independent prostate cancer cells. Gene set enrichment analysis nominated Wnt as the top pathway associated with DNAPK. We found that DNAPK interacts with the Wnt transcription factor LEF1 and is critical for LEF1-mediated transcription. Our data show that DNAPK drives prostate cancer progression through transcriptional regulation of Wnt signaling and is an attractive therapeutic target in aggressive prostate cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Clinical cancer research : an official journal of the American Association for Cancer Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.