Abstract
A single-nucleotide polymorphism (SNP) detection method was developed by combining single-base primer extension and salt-induced aggregation of gold nanoparticles densely functionalized with double-stranded DNA (dsDNA-AuNP). The dsDNA-AuNPs undergo rapid aggregation in a medium of high ionic strength, whereas particles having a single-base protrusion at the outermost surface disperse stably, allowing detection of a single-base difference in length by color changes. When SNP typing primers are used as analytes to hybridize to the single-stranded DNA on the AuNP surface, the resulting dsDNA-AuNP works as a visual indicator of single-base extension. A set of four extension reaction mixtures is prepared using each of ddNTPs and subsequently subjected to the aggregation assay. Three mixtures involving ddNTP that is not complementary to the SNP site in the target produce the aggregates that exhibit a purple color. In contrast, one mixture with the complementary ddNTP generates the single-base protrusion and appears red. This method could potentially be used in clinical diagnostics for personalized medicine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.