Abstract
DNA damage can result from intrinsic cellular processes and from exposure to stressful environments. Such DNA damage generally threatens genome integrity and cell viability1. However, here we report that the transient induction of DNA strand breaks (single-strand breaks, double-strand breaks or both) in the moss Physcomitrella patens can trigger the reprogramming of differentiated leaf cells into stem cells without cell death. After intact leafy shoots (gametophores) were exposed to zeocin, an inducer of DNA strand breaks, the STEM CELL-INDUCING FACTOR 1 (STEMIN1)2 promoter was activated in some leaf cells. These cells subsequently initiated tip growth and underwent asymmetric cell divisions to form chloronema apical stem cells, which are in an earlier phase of the life cycle than leaf cells and have the ability to form new gametophores. This DNA-strand-break-induced reprogramming required the DNA damage sensor ATR kinase, but not ATM kinase, together with STEMIN1 and closely related proteins. ATR was also indispensable for the induction of STEMIN1 by DNA strand breaks. Our findings indicate that DNA strand breaks, which are usually considered to pose a severe threat to cells, trigger cellular reprogramming towards stem cells via the activity of ATR and STEMINs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.