Abstract

Simple lysine conjugates are capable of selective DNA damage at sites approximating a variety of naturally occurring DNA-damage patterns. This process transforms single-strand DNA cleavage into double-strand cleavage with a potential impact on gene and cancer therapy or on the design of DNA constructs that require disassembly at a specific location. This study constitutes an example of DNA damage site recognition by molecules that are two orders of magnitude smaller than DNA-processing enzymes and presents a strategy for site-selective cleavage of single-strand nucleotides, which is based on their annealing with two shorter counterstrands designed to recreate the above duplex damage site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call