Abstract

Accumulating evidence supports the role of the DNA damage response (DDR) in the negative regulation of tumorigenesis. Here, we found that DDR signaling poises a series of epigenetic events, resulting in activation of pro-tumorigenic genes but can go as far as reactivation of the pluripotency gene OCT4. Loss of DNA methylation appears to be a key initiating event in DDR-dependent OCT4 locus reactivation although full reactivation required the presence of a driving oncogene, such as Myc and macroH2A downregulation. Using genetic-lineage-tracing experiments and an in situ labeling approach, we show that DDR-induced epigenetic reactivation of OCT4 regulates the resistance to chemotherapy and contributes to tumor relapse both in mouse and primary human cancers. In turn, deletion of OCT4 reverses chemoresistance and delays the relapse. Here, we uncovered an unexpected tumor-promoting role of DDR in cancer cell reprogramming, providing novel therapeutic entry points for cancer intervention strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.