Abstract

Decay of an Auger-electron-emitting radioisotope can knock out a targeted gene by producing DNA strand breaks within its sequence. For delivery of Auger emitters to genomic targets we used triplex-forming oligonucleotides (TFOs) that bind specifically to their target sequences by forming hydrogen bonds within the major groove of the target duplex. We named this approach antigene radiotherapy. In our previous studies, we demonstrated that (125)I-labeled TFOs targeted against the human MDR1 gene produced sequence-specific double strand breaks (DSBs) within this gene in live cultured cells. We also found that conjugation of TFO with nuclear localization signal peptide significantly increased the efficiency of targeting. To screen the wide variety of possible TFO modifications a sensitive and robust assay of DNA damage produced by such (125)I-TFOs would be highly desirable. Recently we showed a direct correspondence between the number of decays of (125)I incorporated into DNA as (125)I-UdR and the number of histone gamma-H2AX foci per cell revealed by staining with gamma-H2AX antibodies. The technique is 100-fold more sensitive than other DSB-detection methods, thus it is possible to detect as few as an average of 0.5 DSBs per cell in a population of cultured cells. Here we applied this method to evaluate the intracellular DNA damage produced by two (125)I-TFOs, the first targeted to the single-copy HPRT gene ((125)I-TFO-HPRT) and second to a multicopy repeated sequence (GA)(n) that occurs almost 7000 times in the human genome ((125)I-TFO-GA). DNA damage produced by (125)I-TFO was assessed by staining the cells with gamma-H2AX antibody followed by either direct counting gamma-H2AX foci or by measuring the gamma-H2AX signal using flow cytometry. Both methods produced quantitatively close results; (125)I-TFO-GA with multiple nuclear targets produced on average 1.93 times more gamma-H2AX foci per cell and generated 1.96 times increase in gamma-H2AX antibody staining signal than (125)I-TFO-HPRT with a single target. The gamma-H2AX-based assay requires considerably less time and effort than the direct measurement of DSB by Southern hybridization applied previously. Therefore, we believe that gamma-H2AX-based measurement of DNA damage could be useful for evaluation and cellular DNA accessibility by (125)I-labeled DNA targeting agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.