Abstract
DNA damage-inducible transcript 3 (DDIT3), a member of the CCAAT/enhancer-binding protein (C/EBP) family, is involved in cellular apoptosis and differentiation. DDIT3 participates in the regulation of adipogenesis and osteogenesis in vitro and in vivo. However, the role of DDIT3 in osteoclastogenesis is not yet known. In this study, the involvement of DDIT3 in osteoclast differentiation and function was reported for the first time. CRISPR/Cas9-mediated DDIT3 knockout (KO) mice were generated for functional assessment. Tartrate-resistant acid phosphatase (TRAP) staining of distal femurs showed increased positive cells in DDIT3 KO mice. DDIT3 expression was downregulated during the receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation of bone marrow-derived macrophages (BMMs). The loss of DDIT3 increased the expression of osteoclast-specific markers, including nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), TRAP, cathepsin K (CTSK), and dendritic cell-specific transmembrane protein (DC-STAMP) and promoted the formation of TRAP-positive multinucleated osteoclasts. The actin ring number and resorption area of bone slices were also increased in DDIT3 KO BMMs. Lentivirus-mediated DDIT3 overexpression significantly inhibited the osteoclast differentiation of RAW264.7 cells. In the tumor necrosis factor-α-induced osteolysis model, DDIT3 deficiency enhanced osteoclast formation and aggravated bone resorption. DDIT3 inhibited osteoclast differentiation by regulating the C/EBPα-CTSK axis. Furthermore, DDIT3 KO intensified the RANKL-triggered activation of the MAPKs and Akt signaling pathways. Taken together, the results revealed the essential role of DDIT3 in osteoclastogenesis in vitro and in vivo and its close relationship with osteoclast-associated transcription factors and pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.