Abstract

Phenylketonuria (PKU) is a disease caused by a deficiency of phenylalanine hydroxylase (PAH), resulting in an accumulation of phenylalanine (Phe) in the brain tissue, cerebrospinal fluid, and other tissues of PKU patients. Considering that high levels of Phe are associated with neurological dysfunction and that the mechanisms underlying the neurotoxicity in PKU remain poorly understood, the main objective of this study was to investigate the in vivo and in vitro effects of Phe on DNA damage, as determined by the alkaline comet assay. The results showed that, compared to control group, the levels of DNA migration were significantly greater after acute administration of Phe, p-chlorophenylalanine (p-Cl-Phe, an inhibitor of PAH), or a combination thereof in cerebral cortex and blood, indicating DNA damage. These treatments also provoked increase of carbonyl content. Additionally, when Phe or p-Cl-Phe was present in the incubation medium, we observed an increase in the frequency and index of DNA damage in the cerebral cortex and blood, without affecting lactate dehydrogenase (LDH) release. Our in vitro and in vivo findings indicate that DNA damage occurs in the cerebral cortex and blood of rats receiving Phe, suggesting that this mechanism could be, at least in part, responsible for the neurological dysfunction in PKU patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.