Abstract

Microglial cells are resident immune cells in the central nervous system. Activation of microglia as induced by CdTe quantum dots (QDs) can trigger damage to neurons. To quantify the intracellular QDs, we monitored the intracellular Cd concentration in the QD-exposed mouse microglial cells (BV-2 cell line). The extent of cell injury at different times correlated with the Cd concentration in cells at that time. In addition to Cd ion detection, we also monitored the intracellular fluorescence of the QDs. More QDs accumulated in the nucleus than in the cytoplasm. Comet assays confirmed that QDs induce DNA damage. However, DNA cannot interact with QDs, so the DNA damage was not caused by CdTe QDs adducts to DNA but by the increase of the Cd ion concentration and the secondary oxidative damage. In addition to DNA damage, biofilm injury and endogenous reduced glutathione depletion were also apparent in QD-exposed BV-2 cells. These changes can be prevented or even reversed by exogenous reduced glutathione administration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.