Abstract
We have investigated the effects of DNA damage by (+/-)-anti-benzo[a]pyrene diol epoxide (BPDE) and UV light on the formation of a positioned nucleosome in the Xenopus borealis 5S rRNA gene. Gel-shift analysis of the reconstituted products indicates that BPDE damage facilitates the formation of a nucleosome onto this sequence. Competitive reconstitution experiments show that average levels of 0.5, 0.9, and 2.1 BPDE adducts/146 bp of 5S DNA (i.e., the size of DNA associated with a nucleosome core particle) yield changes of -220, -290, and -540 cal/mol, respectively, in the free energy (delta G) of nucleosome formation. These values yield increases of core histone binding to 5S DNA (K(a)) of 1.4-, 1.6-, and 2.5-fold, compared with undamaged DNA. Conversely, irradiation with UV light decreases nucleosome formation. Irradiation at either 500 or 2500 J/m2 of UV light [0.6 and 0.8 cyclobutane pyrimidine dimer/146 bp (on average), respectively] results in respective changes of +130 and +250 cal/mol. This translates to decreases in core histone binding to irradiated 5S DNA (K(a)) of 1.2- and 1.5-fold compared with undamaged DNA. These results indicate that nucleosome stability can be markedly affected by the formation of certain DNA lesions. Such changes could have major effects on the kinetics of DNA processing events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the National Academy of Sciences of the United States of America
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.