Abstract

The present overview describes the formation of deoxyribonucleic acid (DNA) adducts from endogenous and exogenous aldehydes, such as acetaldehyde, acrolein, crotonaldehyde, malonaldehyde, 4-hydroxy-2-nonenal and 2,4-decadienal. Malonaldehyde reacts with 2’-deoxyguanosine, 2’-deoxyadenosine, and 2’-deoxycytidine, yielding cyclic pyrimidopurinone and acyclic adducts. The direct addition of ɑ,β-unsaturated aldehydes to DNA bases yields cyclic substituted propano adducts, such as 1,N2-propano-2’-deoxyguanosine. Alternatively, ɑ,β-unsaturated aldehydes can be oxidized to reactive epoxides, giving ethano or etheno derivatives upon reaction with DNA. In addition, information on highly sensitive techniques, employed for the in vivo detection and quantification of DNA-aldehyde adducts, is also provided. Some of these DNA-aldehyde lesions have been shown to be highly mutagenic. In fact, lipid peroxidation and exogenous aldehyde exposure could potentially account for the observed carcinogenicity of urban air pollution and cigarette smoke exposure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.