Abstract

Tributyltin (TBT) is a widespread environmental contaminant in aquatic systems whose adverse effects in development and reproduction are related to its well-known endocrine-disrupting activity. In this work, the early molecular effects of TBT in Chironomus riparius (Diptera) were evaluated by analyzing its DNA damaging potential and the transcriptional response of different endocrine-related genes. Twenty-four-hour in vivo exposures of the aquatic larvae, at environmentally relevant doses of TBT, revealed genotoxic activity as shown by significant increases in DNA strand breaks quantified with the comet assay. TBT was also able to induce significant increases in transcripts from the ecdysone receptor gene (EcR), the ultraspiracle gene (usp) (insect ortholog of the retinoid X receptor), the estrogen-related receptor (ERR) gene and the E74 early ecdysone-inducible gene, as measured by real-time RT-PCR. In contrast, the expression of the vitellogenin (vg) gene remained unaltered, while the hsp70 gene appeared to be down-regulated. The ability of TBT to up-regulate hormonal target genes provides the first evidence, at genomic level, of its endocrine disruptive effects and also suggests a mechanism of action that mimics ecdysteroid hormones in insects. These data reveal for the first time the early genomic effects of TBT on an insect genome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.