Abstract

Damage to DNA is considered to be the main initiating event by which genotoxins cause hereditary effects and cancer. Single or double strand breaks, bases modifications or deletions, intra- or interstrand DNA–DNA or DNA–protein cross-links constitute the major lesions formed in different proportions according to agents and to DNA sequence context. They can result in cell death or in mutational events which in turn may initiate malignant transformation. Normal cells are able to repair these lesions with fidelity or by introducing errors. Base excision (BER) and nucleotide excision (NER) repair are error-free processes acting on the simpler forms of DNA damage. A specialized form of BER involves the removal of mismatched DNA bases occurring as errors of DNA replication or from miscoding properties of damaged bases. Severe damage will be repaired according to several types of recombinational processes: homologous, illegitimate and site-specific recombination pathways. The loss of repair capacity as seen in a number of human genetic diseases and mutant cell lines leads to hypersensitivity to environmental agents. Repair-defective cells show qualitative (mutation spectrum) and quantitative alterations in dose–effect relationships. For such repair-deficient systems, direct measurements at low doses are possible and the extrapolation from large to low doses fits well with the linear or the linear-quadratic no-threshold models. Extensive debate still takes place as to the shape of the dose–response relationships in the region at which genetic effects are not directly detectable in repair-proficient normal cells. Comparison of repair mutants and wild-type organisms pragmatically suggests that, for many genotoxins and tissues, very low doses may have no effect at all in normal cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.