Abstract
BackgroundAbnormal alternative splicing is frequently associated with carcinogenesis. In B‐cell acute lymphoblastic leukemia (B‐ALL), double homeobox 4 fused with immunoglobulin heavy chain (DUX4/IGH) can lead to the aberrant production of E‐26 transformation‐specific family related gene abnormal transcript (ERGalt) and other splicing variants. However, the molecular mechanism underpinning this process remains elusive. Here, we aimed to know how DUX4/IGH triggers abnormal splicing in leukemia.MethodsThe differential intron retention analysis was conducted to identify novel DUX4/IGH‐driven splicing in B‐ALL patients. X‐ray crystallography, small angle X‐ray scattering (SAXS), and analytical ultracentrifugation were used to investigate how DUX4/IGH recognize double DUX4 responsive element (DRE)‐DRE sites. The ERGalt biogenesis and B‐cell differentiation assays were performed to characterize the DUX4/IGH crosslinking activity. To check whether recombination‐activating gene 1/2 (RAG1/2) was required for DUX4/IGH‐driven splicing, the proximity ligation assay, co‐immunoprecipitation, mammalian two hybrid characterizations, in vitro RAG1/2 cleavage, and shRNA knock‐down assays were performed.ResultsWe reported previously unrecognized intron retention events in C‐type lectin domain family 12, member A abnormal transcript (CLEC12Aalt) and chromosome 6 open reading frame 89 abnormal transcript (C6orf89alt), where also harbored repetitive DRE‐DRE sites. Supportively, X‐ray crystallography and SAXS characterization revealed that DUX4 homeobox domain (HD)1‐HD2 might dimerize into a dumbbell‐shape trans configuration to crosslink two adjacent DRE sites. Impaired DUX4/IGH‐mediated crosslinking abolishes ERGalt, CLEC12Aalt, and C6orf89alt biogenesis, resulting in marked alleviation of its inhibitory effect on B‐cell differentiation. Furthermore, we also observed a rare RAG1/2‐mediated recombination signal sequence‐like DNA edition in DUX4/IGH target genes. Supportively, shRNA knock‐down of RAG1/2 in leukemic Reh cells consistently impaired the biogenesis of ERGalt, CLEC12Aalt, and C6orf89alt.ConclusionsAll these results suggest that DUX4/IGH‐driven DNA crosslinking is required for RAG1/2 recruitment onto the double tandem DRE‐DRE sites, catalyzing V(D)J‐like recombination and oncogenic splicing in acute lymphoblastic leukemia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.