Abstract
AbstractThe huge information storage capability of DNA and its ability to self‐assemble can be harnessed to enable massively parallel computing in a small space. DNA‐based logic gates are designed that rely on DNA strand displacement reactions; however, computation is slow due to time‐consuming DNA reassembly processes and prone to failure as DNA is susceptible to degradation by nucleases and under certain solution conditions. Here, it is shown that the presence of a cationic copolymer boosts the speed of DNA logic gate operations that involve multiple and parallel strand displacement reactions. Two kinds of DNA molecular operations, one based on a translator gate and one on a seesaw gate, are successfully enhanced by the copolymer without tuning of computing conditions or DNA sequences. The copolymer markedly reduces operation times from hours to minutes. Moreover, the copolymer enhances nuclease resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.