Abstract

During the past decade, DNA computing has been rapidly developed and made continuous progress. Based on typical DNA functional motifs, DNA computational devices can perform diverse powerful computational functions, such as simple Boolean logics and sophisticated neural network algorithms. Thus, DNA computer is widely regarded as one of the most excellent next-generation molecular computers performing Boolean logic. Benefiting from DNAs’ inherent properties of biocompatibility, low-cost, ease of synthesis, and sequence programmability, DNA computational devices have shown great potential in various biosensing applications. In this review, we summarize the recent progress in DNA computational devices-based biosensors. Initially, DNA logic circuit-based in vitro biosensing is outlined. Afterwards, the DNA neural network-based in vitro biosensing is reviewed. Further, employing DNA logical circuits for in vivo biosensing and programming cell behaviors is also elaborated. Finally, we discuss future challenges and offer some insights on potential directions of DNA computational device-based smart biosensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call