Abstract
ABSTRACT In the present study, five Penicillium species, namely, P. italicum, P. expansum, P. simplicissimum, P. oxalicum, and P. citrinum, were identified using ITS (internal transcribed spacer) and β-tubulin markers and screened for their in vitro antagonistic potential against a soil-borne fungal pathogen, Macrophomina phaseolina, in a dual-culture plate assay. Among all the tested strains, P. italicum showed the highest antagonistic potential against M. phaseolina by reducing its growth up to 57% over control, followed by P. citrinum (42%), P. simplicissimum (21%), P. expansum (11%), and P. oxalicum (9%). In order to find out the mechanism of action of P. italicum, genomic DNA of M. phaseolina was exposed to P. italicum secondary metabolites. The findings showed that these metabolites completely degraded the fungal DNA after the 48-h incubation period. To further explore the antifungal mechanism of action of P. italicum, chloroform and ethyl acetate fractions of its metabolites were subjected to gas chromatography–mass spectrometry (GC-MS) analysis. The major compounds identified in these fractions were 9,12-octadecadienoic acid (Z,Z)- (25.19%), decane (19.72%), dodecane (18.05%), benzene, nitro- (14.62%), benzene, 1,3,5-trimethyl (14.37%), benzene, 1,4-diethyl (11.62%), 1,2-benzenedicarboxylic acid, mono(2-ethylhexyl) ester (9.02%), and 1-nonadecene (8.99%), which could be responsible for control of M. phaseolina growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.