Abstract

The efficiency of [Cu(2,2′-bipyridine)2(NO3)]NO3, [Cu(2,2′-dipyridylamine)2(NO3)2], and [Cu(dipicolylamine)2(NO3)2] complexes (complex 1, 2 and 3, respectively) in oxidative DNA cleavage was examined by electrophoresis and linear dichroism (LD). Among the three Cu complexes, complex 1 showed the highest efficiency in super-coiled DNA (scDNA) cleavage in electrophoresis. The presence of tiron, a superoxide radical scavenger, suppressed the reaction almost completely. The LD signal at 260nm decreased gradually as the time passed. The decrease in LD magnitude was explained best by the sum of the two single exponential curves. This suggests that the cleavage reaction involves two first order kinetic processes; an increase in flexibility due to scission of one of the strands and a shortening in the DNA stem due to cut of both strands of double stranded DNA (dsDNA). In agreement with the electrophoresis data, complex 1 exhibited the highest efficiency with the superoxide radical found to be the essential reactive oxygen species. The order of efficiency in both scDNA and dsDNA was as follows: complex 1>complex 2>complex 3. The electrochemical properties alone were insufficient to explain the observed efficiencies, even though reduction of the central Cu ion is essential for the oxidative DNA cleavage. This highlights the importance of an ability to ligate the molecular oxygen (or hydrogen peroxide) to the central Cu ion to produce the superoxide radical, in addition to the reduction of Cu ion, in oxidative DNA cleavage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.